The Basic Theorem and its Consequences

Noha Eftekhari

Department of Mathematics, Faculty of Sciences, ShahreKord University, P.O.Box 115, ShahreKord, Iran

E-mail: Eftekharinoha@Yahoo.com

ABSTRACT. Let \mathcal{T} be a compact Hausdorff topological space and let \mathcal{M} denote an n-dimensional subspace of the space $\mathbf{C}(\mathcal{T})$, the space of real-valued continuous functions on \mathcal{T} and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel'man, which uses Helly's Theorem, now the paper obtains a new proof of the Basic Theorem. The significance of the Basic Theorem for us is that it reduces the characterization of a best approximation to $f \in \mathbf{C}(\mathcal{T})$ from \mathcal{M} to the case of finite \mathcal{T} , that is to the case of approximation in $l^{\infty}(r)$. If one solves the problem for the finite case of \mathcal{T} then one can deduce the solution to the general case. An immediate consequence of the Basic Theorem is that for a finite dimensional subspace \mathcal{M} of $C_0(\mathcal{T})$ there exists a separating measure for \mathcal{M} and $f \in C_0(\mathcal{T}) \setminus \mathcal{M}$, the cardinality of whose support is not greater than dim $\mathcal{M}+1$. This result is a special case of a more general abstract result due to Singer [5]. Then the Basic Theorem is used to obtain a general characterization theorem of a best approximation from \mathcal{M} to $f \in \mathbf{C}(\mathcal{T})$. We also use the Basic Theorem to establish the sufficiency of Haar's condition for a subspace \mathcal{M} of $\mathbf{C}(\mathcal{T})$ to be Chebyshev.

Keywords: Best Approximation, Separating Measure, Chebyshev set.

2000 Mathematics subject classification: 41A52 and 41A65.

1. Introduction

Throughout this paper the setting will be as follows: \mathcal{T} will be a compact Hausdorff topological space and $\mathbf{C}(\mathcal{T})$ will denote the space of real continuous functions on \mathcal{T} and \mathcal{M} is an n-dimensional subspace of $\mathbf{C}(\mathcal{T})$. The spaces $\mathbf{C}(\mathcal{T})$ are equipped with the uniform norm. The uniform norm is defined by

$$||f|| = \max_{t \in \mathcal{T}} |f(t)| \text{ for all } f \in \mathbf{C}(\mathcal{T}) ,$$

and

$$d(f, \mathcal{M}) = \inf_{g \in \mathcal{M}} ||f - g|| \text{ for } f \in \mathbf{C}(\mathcal{T}),$$

is called the distance from f to \mathcal{M} . We denote by

$$P_{\mathcal{M}}(f) = \{ g \in \mathcal{M} : ||f - g|| = d(f, \mathcal{M}) \},$$

the set of best approximations to f from \mathcal{M} .

The space $M(\mathcal{T})$ of bounded real valued Borel measures on \mathcal{T} is isometrically isomorphic to the space of bounded linear functionals on $\mathbf{C}(\mathcal{T})$. There is a nonzero $\lambda \in M(\mathcal{T})$ such that $\lambda g < \lambda h$, for all $g \in \mathcal{M}$ and $h \in B(f, d(f, \mathcal{M}))$, the open ball with center f and radius $d(f, \mathcal{M})$. We will call such a measure a separating measure for f and \mathcal{M} . A set W is said to be a Chebyshev subset of $\mathbf{C}(\mathcal{T})$ if for each $f \in \mathbf{C}(\mathcal{T})$, the set $P_W(f)$ is a single point.

The paper obtains a characterization of Chebyshev hyperplanes in $l^{\infty}(n)$ (Theorem 2.1) and then by using it we state a characterization theorem for the best approximation from a Chebyshev hyperplane \mathcal{M} of $l^{\infty}(n)$ (Theorem 2.3). Chency [2] gives a necessary and sufficient condition for $q \in \mathcal{M}$ not to be a best approximation to $f \in \mathbf{C}(\mathcal{T})$. We give an alternative proof of Cheney's characterization (Theorem 3.1), and then use it to give a new proof of the Basic Theorem 3.2: there exists a finite subset A of \mathcal{T} such that $d(f|_A, \mathcal{M}|_A) = d(f, \mathcal{M})$ and card $A \leq \dim \mathcal{M} + 1$. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel'man, which uses Helly's Theorem. The significance of the Basic Theorem for us is that it reduces the characterization of a best approximation to f from \mathcal{M} to the case of finite \mathcal{T} , that is to the case of approximation in $l^{\infty}(r)$. If one solves the problem for the finite case of \mathcal{T} then one can deduce the solution to the general case. A set, the existence of which is asserted by Theorem 3.2, will be called a "basic set". An immediate consequence of the Basic Theorem is that for a finite dimensional subspace \mathcal{M} of $C_0(\mathcal{T})$ there exists a separating measure for \mathcal{M} and $f \in C_0(\mathcal{T}) \setminus \mathcal{M}$, the cardinality of whose support is not greater than dim $\mathcal{M}+1$. This result is a special case of a more general abstract result due to Singer [5]. Theorem 3.9 and Theorem 2.3 characterize Chebyshev hyperplanes in $l^{\infty}(n)$ and best approximations from them. Then the Basic Theorem is used to obtain a general characterization theorem

(Theorem 3.11) of a best approximation from \mathcal{M} to $f \in \mathbf{C}(\mathcal{T})$. The latter theorem is equivalent to Theorem 3.12 which is the extension to a general \mathcal{M} , not necessary Chebyshev, of the Chebyshev Alternation Theorem. We also use the Basic Theorem to establish the sufficiency of Haar's condition for a subspace \mathcal{M} of $\mathbf{C}(\mathcal{T})$ to be Chebyshev (Theorem 3.10).

Let $0 \not\equiv f \in \mathbf{C}(\mathcal{T})$. The critical set is

crit
$$f = \{ t \in \mathcal{T} : |f(t)| = ||f|| \}$$
.

Define

$$e: \mathcal{T} \longrightarrow \mathcal{M}^*$$
 by $e(t)(q) = q(t)$, for all $q \in \mathcal{M}$.

Let $A \subseteq \mathcal{T}$. The following conditions are equivalent.

- (1) For $g \in \mathcal{M} \setminus \{0\}$, card $g^{-1}(0) \leq n 1$ (the Haar condition).
- (2) For each set $A = \{t_1, \dots, t_n\}$ of n distinct points the mapping $S : \mathcal{M} \to \mathbb{R}^n$, defined by $S(g) = (g(t_1), \dots, g(t_n))$, is injective.
- (3) For each set $A = \{t_1, \dots, t_n\}$ of n distinct points the mapping $S : \mathcal{M} \to \mathbb{R}^n$ is surjective.
- (4) For each set $A = \{t_1, \dots, t_n\}$ of n distinct points dim $\mathcal{M}|_A = n$.
- (5) If $r \leq n$ and t_1, \ldots, t_r are distinct points of \mathcal{T} then $e(t_1), \ldots, e(t_r)$ are linearly independent points of \mathcal{M}^* .
- (6) If $A \subseteq \mathcal{T}$ and card $A \leq n$ then $\mathcal{M}|_A = C(A)$.

The following theorems are required.

Theorem 1.1. ([4, Lemma 2.2.1]) Let $f \in \mathbf{C}(\mathcal{T})$ and let f be not identically zero. Let \mathcal{M} be a subspace of $\mathbf{C}(\mathcal{T})$. A necessary and sufficient condition that $0 \in P_{\mathcal{M}}(f)$ is that, there is no $g \in \mathcal{M} \setminus \{0\}$ such that

$$f(t)g(t) > 0$$
, for all $t \in \operatorname{crit} f$.

Theorem 1.2. (The basic separation theorem)([3,Theorem 3.4]) Suppose A and B are disjoint, nonempty, convex sets in a topological vector space \mathcal{X} .

(a) If A is open there exist $\varphi \in \mathcal{X}^*$ and $\gamma \in \mathbb{R}$ such that

$$\varphi(x) < \gamma \le \varphi(y)$$
 for every $x \in A$ and for every $y \in B$.

(b) If A is compact, B is closed, and \mathcal{X} is locally convex, then there exist $\varphi \in \mathcal{X}^*, \gamma_1 \in \mathbb{R}, \gamma_2 \in \mathbb{R}$, such that

$$\varphi(x) < \gamma_1 < \gamma_2 < \varphi(y)$$
 for every $x \in A$ and for every $y \in B$.

Theorem 1.3. (Caratheodory's theorem) Let A be a subset of an n-dimensional linear space. Every point of the convex hull of A is expressible as a convex combination of n+1 (or fewer) elements of A.

Theorem 1.4. (The Chebyshev Alternation Theorem) Let $f \in C([a,b])$. A polynomial $p \in P_{n-1}$ is a best approximation to f if and only if there exist n+1 points $a \le t_0 < t_1 < \cdots < t_n \le b$ and $\varepsilon \in \{-1,1\}$ such that

$$(f-p)(t_j) = \varepsilon(-1)^j ||f-p|| \text{ for } j = 0, \dots, n.$$

(f - p has n alternations on [a, b]).

2. Chebyshev Hyperplanes in $l^{\infty}(n)$

In this section we establish those restricted finite dimensional results for approximation by hyperplanes in $l^{\infty}(n)$ from which, using the Basic Theorem, the classical results for best approximation from a subspace \mathcal{M} of $\mathbf{C}(\mathcal{T})$ will be deduced.

It is a geometrically obvious fact that if $\mathcal{M} = \varphi^{-1}(0)$ is a hyperplane in a normed linear space \mathcal{X} then \mathcal{M} is Chebyshev if and only if $\{x \in \mathcal{X} : ||x|| = 1 \text{ and } \varphi(x) = ||\varphi||\}$ is a single point. Interpreting this in the case $\mathcal{X} = l^{\infty}(n)$ we obtain a characterization of Chebyshev hyperplanes in $l^{\infty}(n)$.

Theorem 2.1. Let $\varphi = (\varphi_1, \dots, \varphi_n) \in l^1(n) \setminus \{0\}$. A hyperplane $\mathcal{M} = \varphi^{-1}(0)$ of $l^{\infty}(n)$ is Chebyshev if and only if $\varphi_k \neq 0$ for all $k = 1, \dots, n$.

Proof. Let $f = (f(1), \ldots, f(n)) \in l^{\infty}(n) \setminus \mathcal{M}$. So $\varphi(f) = \sum_{k=1}^{n} \varphi_k f(k)$ and $\|\varphi\| \|f\|$

 $= \sum_{k=1}^{n} |\varphi_k| . ||f||. \text{ Thus } \varphi(f) = ||\varphi|| ||f|| \text{ if and only if } f(k) = \operatorname{sgn} \varphi_k . ||f|| \text{ when } \varphi_k \neq 0. \text{ Therefore } \{f : ||f|| = 1, \varphi(f) = ||\varphi|| \} \text{ is a single point if and only if } \varphi_k \neq 0 \text{ for all } k = 1, \dots, n.$

Corollary 2.2. If \mathcal{M} is a Chebyshev hyperplane in $l^{\infty}(n)$ and $A \subset \{1, 2, ..., n\}$ then $\mathcal{M}|_A = l^{\infty}(A)$.

Proof. Let $\mathcal{M} = \varphi^{-1}(0)$ where $\varphi \in l^1(n) \setminus \{0\}$. Then by Theorem 2.1, $\varphi = \sum_{k=1}^n \varphi_k \ e_{\mathcal{T}}(k)$ and $\varphi_k \neq 0$ for $k=1,\ldots,n$. Now suppose, on the contrary, that $\mathcal{M}|_A \subset l^{\infty}(A)$. Then there exists $\psi \in l^1(A) \setminus \{0\}$ such that $\mathcal{M}|_A \subseteq \psi^{-1}(0)$. So $\psi(g|_A) = 0$ for all $g \in \mathcal{M}$. Let $\psi = \sum_{i \in A} c_i e_A(i)$. Thus $\sum_{i \in A} c_i \ g(i) = 0$ for all $g \in \mathcal{M}$. That is, $(\sum_{i \in A} c_i \ e_{\mathcal{T}}(i))(g) = 0$ for all $g \in \mathcal{M} = \varphi^{-1}(0)$. So $\sum_{i \in A} c_i \ e_{\mathcal{T}}(i) = \alpha \varphi = \alpha \sum_{i=1}^n \varphi_i \ e_{\mathcal{T}}(i)$ for some α . Therefore, $\alpha = 0$ and c_i are all zero and so $\psi \equiv 0$ which is a contradiction. So $\mathcal{M}|_A = l^{\infty}(A)$.

The next theorem characterize the best approximation from a Chebyshev hyperplane \mathcal{M} of $l^{\infty}(n)$.

Theorem 2.3. Let \mathcal{M} be a Chebyshev hyperplane subspace of $l^{\infty}(n)$. Let $f \in l^{\infty}(n) \setminus \mathcal{M}$ and $g \in \mathcal{M}$. Then $g \in P_{\mathcal{M}}(f)$ if and only if $(f-g)(i) = \operatorname{sgn} c(i) \| f - g \|$, for $i = 1, \ldots, n$, where $\varphi = (c(1), \ldots, c(n)) \in l^{1}(n)$ and $\|\varphi\|_{1} = 1, \varphi \in \mathcal{M}^{\perp}$ and all c(i) are nonzero.

Proof. By General Characterization Theorem [1,Theorem 1]

$$g \in P_{\mathcal{M}}(f) \Leftrightarrow \varphi(f - g) = \|\varphi\| \|f - g\|, \|\varphi\| = 1, \varphi \in \mathcal{M}^{\perp},$$

$$\Leftrightarrow (f - g)(i) = \operatorname{sgn} c(i) \|f - g\|, \text{ for } i = 1, \dots, n, \varphi \in \mathcal{M}^{\perp}.$$

Also by Theorem 2.1, $c(i) \neq 0$ for i = 1, ..., n.

3. The Basic Theorem and its Results

In this section, we will prove "Basic Theorem". It is important for us because investigation of best approximation to $f \in \mathbf{C}(T) \setminus \mathcal{M}$ from \mathcal{M} reduces to the case of finite T, that is, in finite space $l^{\infty}(r)$. A set, the existence of which is asserted by the theorem, will be called a "basic set". The Basic Theorem has worthwhile results. We develop of the Chebyshev theory of best uniform approximation using the Basic Theorem. The extension to a general (not necessarily Chebyshev) \mathcal{M} of the Chebyshev Alternation Theorem (3.11 and 3.12) will be obtained by exploiting the Basic Theorem.

The following theorem has been proved in Chapter 3 of [2] and we give an alternative proof of it.

Theorem 3.1. (Characterization Theorem) In order that $g \in \mathcal{M}$ is not a best approximation to $f \in \mathbf{C}(\mathcal{T})$, it is necessary and sufficient that $0 \in \mathcal{M}^*$ is not in the convex hull of the set $\{ h(t)e(t) : |h(t)| = ||h|| \}$, where h = g - f.

Proof. (Use basic separation theorem) Let $\mathcal{T}_0 = \operatorname{crit} h$. Since h is a continuous function, then \mathcal{T}_0 is a closed subset of the compact set \mathcal{T} and so \mathcal{T}_0 is a compact set.

Let $A = \{ h(t)e(t) : t \in \mathcal{T}_0 \}$. The function he is continuous on the compact set \mathcal{T}_0 and so A is a compact subset of \mathcal{M}^* . Since \mathcal{M}^* is finite dimensional then $K = \operatorname{co} A$ is compact in \mathcal{M}^* and K is closed convex subset of \mathcal{M}^* . By Theorem 1.2, it follows that, $0 \notin K$ if and only if there exists $\varphi \in (\mathcal{M}^*)^* \setminus \{0\}$ such that $\varphi(k) > 0$ for all, $k \in K$. Since $(\mathcal{M}^*)^* \cong \mathcal{M}$ then it is equivalent to there exists $g' \in \mathcal{M} \setminus \{0\}$ such that k(g') > 0 for all, $k \in K$. So it is equivalent to there exists $g' \in \mathcal{M} \setminus \{0\}$ such that (h(t)e(t))(g') > 0 for all $t \in \mathcal{T}_0$. Since e(t)(g') = g'(t), it means that, there exists $g' \in \mathcal{M} \setminus \{0\}$ such that h(t)g'(t) > 0, for all $t \in \mathcal{T}_0$ and so by Theorem 1.1, $g \in \mathcal{M}$ is not a best approximation to f.

In the following, we give a new proof of the Basic Theorem.

Theorem 3.2. (Basic Theorem) Let $f \in \mathbf{C}(\mathcal{T}) \setminus \mathcal{M}$. Then there exist r points $t_1, \ldots, t_r \in \mathcal{T}$ such that

$$d(f,\mathcal{M}) = d(f|_A,\mathcal{M}|_A)$$
,

where $A = \{t_1, \ldots, t_r\}$ and card $A \leq \dim \mathcal{M} + 1$.

Proof. Let $g \in P_{\mathcal{M}}(f)$ and h = g - f. That is, $d(f, \mathcal{M}) = \|f - g\| = \|h\|$. Let $\mathcal{T}_0 = \operatorname{crit} h$. Theorem 3.1 (Characterization Theorem) implies that $0 \in K = \operatorname{co} \{ h(t) \ e(t) : t \in \mathcal{T}_0 \}$. The set $\{ h(t) \ e(t) : t \in \mathcal{T}_0 \}$ is a subset of n-dimensional space \mathcal{M}^* and so it follows from Caratheodory's theorem (Theorem 1.3) that $\sum_{i=1}^r \alpha_i \ h(t_i) \ e(t_i) = 0$, for some t_1, \ldots, t_r in \mathcal{T}_0 and some positive numbers $\alpha_1, \ldots, \alpha_r$ with $\sum_{i=1}^r \alpha_i = 1$, where $r \leq \dim \mathcal{M} + 1$. Let $A = \{t_1, \ldots, t_r\}$ and $e_{\mathcal{M}|_A} : \mathcal{T} \to (\mathcal{M}|_A)^*$. Then $0 \in \operatorname{co} \{h(t)e_{\mathcal{M}|_A}(t) : t \in A\}$. One can apply Theorem 3.1 (Characterization Theorem) to A, $\mathcal{M}|_A$ and $g|_A \in P_{\mathcal{M}|_A}(f|_A)$ and get $d(f|_A, \mathcal{M}|_A) = \|(f - g)|_A\| = \|h\| = \|f - g\| = d(f, \mathcal{M})$.

Remark 3.3. In the Basic Theorem $1 \le r \le n+1$ in the real case and $1 \le r \le 2n+1$ in the complex case, because of, $\mathbb{C}^n = \mathbb{R}^{2n}$. Also, we call $A \subseteq \mathcal{T}$ a "basic set" for \mathcal{M} and f if it is finite and such that $d(f, \mathcal{M}) = d(f|_A, \mathcal{M}|_A)$.

The significance of the Basic Theorem is that it reduces the characterization of best approximation to f from \mathcal{M} to the case of finite \mathcal{T} , that is to the case of approximation in $l^{\infty}(r)$. If one solves the problem for the finite case of \mathcal{T} then one can deduce the solution to the general case.

Corollary 3.4. Let $f \in \mathbf{C}(\mathcal{T})$ and $g \in \mathcal{M}$. Let $A \subseteq \mathcal{T}$ be a basic set for \mathcal{M} and f. Then $g \in P_{\mathcal{M}}(f)$ if and only if $||f - g|| = ||(f - g)|_A||$ and $g|_A \in P_{\mathcal{M}|_A}(f|_A)$.

Proof. Let $g \in P_{\mathcal{M}}(f)$. By the Basic Theorem,

The Basic Theorem implies the following corollaries.

$$d(f|_A, \mathcal{M}|_A) = d(f, \mathcal{M}) = ||f - g|| \ge ||(f - g)|_A|| \ge d(f|_A, \mathcal{M}|_A)$$
,

which implies that $||f - g|| = ||(f - g)|_A||$ and $g|_A \in P_{\mathcal{M}|_A}(f|_A)$. Now assume that, $g|_A \in P_{\mathcal{M}|_A}(f|_A)$ and $||f - g|| = ||(f - g)|_A|| = d(f|_A, \mathcal{M}|_A) = d(f, \mathcal{M})$ (the Basic Theorem implies the last equality). Therefore $g \in P_{\mathcal{M}}(f)$.

Corollary 3.5. Let $f \in \mathbf{C}(\mathcal{T}) \setminus \mathcal{M}$. Let $A \subseteq \mathcal{T}$ be a minimal basic set for \mathcal{M} and f. Then $A \subseteq \text{crit}(f - P_{\mathcal{M}}(f)) = \bigcap_{g \in P_{\mathcal{M}}(f)} \text{crit}(f - g)$.

Proof. Let $g \in \operatorname{relint} P_{\mathcal{M}}(f)$. From Corollary 3.4 it follows that

$$||(f-g)|_A|| = ||f-g|| = ||(f-g)|_{\operatorname{crit}(f-g)}||.$$

So $\emptyset \neq A \cap \operatorname{crit}(f-g) \subseteq A$ and it will be shown that $B = A \cap \operatorname{crit}(f-g)$ is a basic set for \mathcal{M} and f. If B = A then there is nothing to prove. Now if $a \in A \setminus B$ then |(f-g)(a)| < ||f-g||. Suppose, on the contrary, that $d(f|_B, \mathcal{M}|_B) < d(f|_A, \mathcal{M}|_A)$. Choose $g' \in \mathcal{M}$ such that $g'|_B \in P_{\mathcal{M}|_B}(f|_B)$. So

$$||(f-g')|_B|| = d(f|_B, \mathcal{M}|_B) < d(f|_A, \mathcal{M}|_A) = ||(f-g)|_A||.$$

Now for $\theta \in (0,1)$, consider

$$||(f - ((1 - \theta)g' + \theta g))|_A|| = \max\{\max_{a \in A \setminus B} |(f - ((1 - \theta)g' + \theta g))(a)|, ||(f - ((1 - \theta)g' + \theta g))|_B||\}.$$

Since |(f-g)(a)| < ||f-g|| and the set $\{|(f-g')(a)| : a \in A \setminus B\}$ is bounded so for θ close to 1, $\max_{a \in A \setminus B} |(f-((1-\theta)g'+\theta g))(a)| < ||f-g||$, also $||(f-g')|_B|| < ||f-g||$ and $||(f-g)|_B|| \le ||(f-g)|_A|| = ||f-g||$. Thus

$$||(f - ((1 - \theta)g' + \theta g))|_A|| < ||f - g||,$$

which is a contradiction. Therefore, $B = A \subseteq \operatorname{crit}(f - g)$ is a basic set for \mathcal{M} and f and so by next remark $A \subseteq \operatorname{crit}(f - P_{\mathcal{M}}(f))$.

Remark 3.6. If $g \in \operatorname{relint} P_{\mathcal{M}}(f)$ then

$$\operatorname{crit}(f - g) = \operatorname{crit}(f - P_{\mathcal{M}}(f)).$$

Because, let $t \in \operatorname{crit}(f-g)$ and let $g' \in P_{\mathcal{M}}(f) \setminus \{g\}$. Then $g \in (g', g'')$ for some $g'' \in P_{\mathcal{M}}(f)$. That is, for some $\theta \in (0, 1)$, $g = (1 - \theta)g' + \theta g''$ and

$$d(f, \mathcal{M}) = \|f - g\| = |(f - g)(t)| \le (1 - \theta)|(f - g')(t)| + \theta|(f - g'')(t)|$$

$$\le (1 - \theta)\|f - g'\| + \theta\|f - g''\| = d(f, \mathcal{M}).$$

So $t \in \operatorname{crit}(f - g')$. That is, $\operatorname{crit}(f - g) = \operatorname{crit}(f - P_{\mathcal{M}}(f))$.

The following theorem is an immediate consequence of the Basic Theorem.

Theorem 3.7. Let $f \in C_0(T) \setminus \mathcal{M}$. Then there exists a separating measure φ , for f and \mathcal{M} , such that $|\sup \varphi| \leq \dim \mathcal{M} + 1$.

Proof. Let A be a minimal basic set for \mathcal{M} and f. If $\varphi \in (\mathcal{M}|_A)^*$ is a separating measure for $f|_A$ and $\mathcal{M}|_A$. Then φ is of the form $\varphi = \sum_{i \in A} c(i) \ e(i), (e(i) \in C(A)^*)$. The functional φ has the natural extension $\bar{\varphi} = \sum_{i \in A} c(i) \ e(i), (e(i) \in C_0(T)^*)$ and $\bar{\varphi}$ is a separating measure for f and \mathcal{M} . Therefore, $|\sup \bar{\varphi}| = \operatorname{card} A \leq \dim \mathcal{M} + 1$. (By the Basic Theorem.)

Theorem 3.8. Let $f \in \mathbf{C}(T) \setminus \mathcal{M}$. Let A be a minimal basic set for \mathcal{M} and f. Then $\mathcal{M}|_A$ is a Chebyshev hyperplane in C(A).

Proof. Apply the Basic Theorem to C(A), $\mathcal{M}|_A$ and $f|_A$ then there exists a minimal basic set $A_1 \subseteq A$ such that card $A_1 \leq \dim \mathcal{M}|_A + 1$ and $d(f, \mathcal{M}) = d(f|_A, \mathcal{M}|_A) = d(f|_{A_{1_1}}, \mathcal{M}|_{A_{1_1}}) = d(f|_{A_1}, \mathcal{M}|_{A_1})$. By minimality of A, it follows that $A_1 = A$.So

$$\dim C(A) \leq \operatorname{card} A \leq \dim \mathcal{M}|_A + 1.$$

But $f|_A \notin \mathcal{M}|_A$ so dim $\mathcal{M}|_A = \dim C(A) - 1$. That is, $\mathcal{M}|_A$ is a hyperplane in C(A).

By Corollary 3.5, $A = A_1 \subseteq \operatorname{crit}(f|_A - P_{\mathcal{M}|_A}(f|_A))$ and so all functions of $P_{\mathcal{M}|_A}(f|_A)$ coincide on A, that is $P_{\mathcal{M}|_A}(f|_A)$ is a single point. Thus $\mathcal{M}|_A$ is Chebyshev in C(A).

Theorem 3.9. Let n > 1. A hyperplane \mathcal{M} of $l^{\infty}(n)$ is Chebyshev if and only if $A = \{1, 2, ..., n\}$ is the only basic set.

Proof. (\Rightarrow) By Corollary 2.2. (\Leftarrow) By Theorem 3.8.

Theorem 3.10. (Haar's Theorem) Let \mathcal{M} be a finite dimensional subspace of $\mathbf{C}(\mathcal{T})$. Then \mathcal{M} satisfies the Haar Condition if and only if \mathcal{M} is a Chebyshev subspace of $\mathbf{C}(\mathcal{T})$.

Proof. (\Rightarrow) Let $f \in \mathbf{C}(\mathcal{T}) \setminus \mathcal{M}$ and dim $\mathcal{M} = n$. Let $A = \{t_1, \ldots, t_r\}$ be a minimal basic set for \mathcal{M} and f. Suppose that $r \leq n$. Then $e_{\mathcal{M}|_A}(t_1), \ldots, e_{\mathcal{M}|_A}(t_r)$ are linearly independent (equivalent to Haar Condition). So dim $\mathcal{M}|_A = r$ and $\mathcal{M}|_A = C(A)$ which contradicts $d(f|_A, \mathcal{M}|_A) = d(f, \mathcal{M}) \neq 0$. Thus r = n + 1. So the restriction mapping $r_A: \mathcal{M} \longrightarrow \mathcal{M}|_A$ is injective and $\mathcal{M}|_A$ is Chebyshev in C(A) (Theorem 3.8) and $r_A(P_{\mathcal{M}}(f)) \subseteq P_{\mathcal{M}|_A}(f|_A)$. Thus $P_{\mathcal{M}}(f)$ is a single point. That is, \mathcal{M} is a Chebyshev subspace of $\mathbf{C}(\mathcal{T})$.

 $Now(\Leftarrow)$, by any known proof of Haar's Theorem.

Now by Corollary 3.4, Theorem 3.8 and Theorem 2.3, one can obtain the following general characterization theorem. Singer [6] obtained a more general abstract characterization theorem of which, this is a special case.

Theorem 3.11. Let $f \in \mathbf{C}(\mathcal{T}) \setminus \mathcal{M}$ and $g \in \mathcal{M}$. Then $g \in P_{\mathcal{M}}(f)$ if and only if there exists a nonempty finite subset $A = \{t_1, \ldots, t_r\}$ of \mathcal{T} , $1 \leq r \leq n+1$, and nonzero c(t) for $t \in A$ with $\sum_{t \in A} |c(t)| = 1$ such that

- (1) $\sum_{t \in A} c(t)e(t) \in \mathcal{M}^{\perp}$, and; (2) $f(t) g(t) = \operatorname{sgn} c(t) \|f g\|$, for $t \in A$.

Proof. Let A be a minimal basic set for \mathcal{M} and f (card $A \leq \dim \mathcal{M} + 1 = n + 1$). By Corollary 3.4, $g \in P_{\mathcal{M}}(f)$ if and only if $g|_A \in P_{\mathcal{M}|_A}(f|_A)$ and ||f - g|| = $||(f-g)|_A||$. By Theorem 3.8 and Theorem 2.3, it is equivalent to there exists a non-zero c(t) for $t \in A$ with $\sum_{t \in A} |c(t)| = 1$ such that

- (1) $\sum_{t \in A} c(t)e(t) \in \mathcal{M}^{\perp}$, and; (2) $f(t) g(t) = \operatorname{sgn} c(t) ||f g||$, for $t \in A$.

If r is the smallest integer such that Theorem 3.11 is satisfied then we obtain the following characterization theorem.

Theorem 3.12. Let $f \in \mathbf{C}(\mathcal{T}) \setminus \mathcal{M}$ and $g \in \mathcal{M}$. Then $g \in P_{\mathcal{M}}(f)$ if and only if there exists a nonempty finite subset $A = \{t_1, \ldots, t_r\}$ of \mathcal{T} , where $1 \leq r \leq n+1$ with the following properties,

(i) The rank of the matrix:

$$G = \begin{bmatrix} g_1(t_1) & \dots & g_1(t_r) \\ \vdots & \vdots & \vdots \\ g_n(t_1) & \dots & g_n(t_r) \end{bmatrix}$$

is less than r, where $\{g_1, \ldots, g_n\}$ is a basis of \mathcal{M} .

(ii) The matrix

$$\begin{bmatrix} g_1(t_1) & \dots & g_1(t_r) \\ \vdots & \vdots & \vdots \\ g_n(t_1) & \dots & g_n(t_r) \\ f(t_1) & \dots & f(t_r) \end{bmatrix}$$

is of rank r.

- (iii) Among the minors of order r of the matrix in part (ii), there exists at least a minor $\Delta \neq 0$ in which all cofactors Δ_j of the elements $f(t_j)$, $j = 1, \ldots, r$ are nonzero.
- (iv) The following equalities are satisfied,

$$f(t_j) - g(t_j) = (\operatorname{sgn} \frac{\Delta_j}{\Delta}) \|f - g\|, \text{ for } j = 1, \dots, r.$$

Proof. The Theorem 3.12 is a translation of the Theorem 3.11 (modified if necessary).

- (i) , (iii) \Leftrightarrow (1) and the fact that all c(t) are nonzero for $t \in A$. Also, r is minimal and dim $\mathcal{M}|_A = r 1$.
- (ii) $\Leftrightarrow f|_A \notin \mathcal{M}|_A$ which relates to A is minimal.

$$(iv) \Leftrightarrow (2)$$

This result, attributed by Zukhovitskii to Remez is the generalization of the Chebyshev Alternation Theorem for Chebyshev $\mathcal{M} \subseteq C([0,1])$ to a general (not necessary Chebyshev) $\mathcal{M} \subseteq \mathbf{C}(\mathcal{T})$. If the theorem is specialized to $\mathcal{T} = [0,1]$ and \mathcal{M} Chebyshev, then it yields the alternation theorem.

Acknowledgement. The author acknowledges with gratitude the role played by Dr. A.L.Brown in editing original thesis; without his encouragement and guidance neither the original thesis nor this adaptation of it could have been produced. I am thankful to Prof. Dr. H.L.Vasudeva.

References

- A.L.Brown, Best Approximation by Smooth Function and Related Problems, International Series of Numerical Mathematics, Birkhauser Verlag Basel, 72 (1984), 70-82.
- [2] E.W.Cheney, Introduction to Approximation Theory, Mc Graw-Hill, 1966.
- [3] W.Rudin, Functional Analysis, second Edition, Mc Graw-Hill, 1991.
- [4] H.S.Shapiro, Topics in Approximation Theory, Springer-Verlag, 1971.
- [5] I.Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, 1970.
- [6] I.Singer, Caracterisation des elements des meilleure approximation dans un espace de Banach guelconque, Acta Sci. Mat., 17 (1956), 181-189.
- [7] S.I.Zukhovitskii, On the Approximation of Real Functions in the Sense of P.L.Chebyshev, Translations. Amer. Math. Soc., 19 (1962), 221-252.