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ABSTRACT. Let 7 be a compact Hausdorff topological space and let
M denote an n—dimensional subspace of the space C(7), the space of
real-valued continuous functions on 7 and let the space be equipped
with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem
to E.Ya.Remez and gives a proof by duality. He also gives a proof due
to Shnirel’'man, which uses Helly’s Theorem, now the paper obtains a
new proof of the Basic Theorem. The significance of the Basic Theorem
for us is that it reduces the characterization of a best approximation
to f € C(7) from M to the case of finite 7, that is to the case of
approximation in [°°(r). If one solves the problem for the finite case of
T then one can deduce the solution to the general case. An immediate
consequence of the Basic Theorem is that for a finite dimensional subspace
M of Co(T) there exists a separating measure for M and f € Co(7)\ M,
the cardinality of whose support is not greater than dim M+1. This result
is a special case of a more general abstract result due to Singer [5]. Then
the Basic Theorem is used to obtain a general characterization theorem
of a best approximation from M to f € C(7). We also use the Basic
Theorem to establish the sufficiency of Haar’s condition for a subspace
M of C(T) to be Chebyshev.
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1. INTRODUCTION

Throughout this paper the setting will be as follows: 7 will be a compact
Hausdorff topological space and C(7) will denote the space of real continuous
functions on 7 and M is an n—dimensional subspace of C(7 ). The spaces C(7)
are equipped with the uniform norm. The uniform norm is defined by

171 = max [f(¢)] for all f € C(T) ,
and
d(f, M) = inf ||f = g]| for f € C(T) |
is called the distance from f to M. We denote by

Prm(f) ={geM : |[f —gll=d(f, M)},

the set of best approximations to f from M.

The space M(7) of bounded real valued Borel measures on 7 is isometrically
isomorphic to the space of bounded linear functionals on C(7). There is a
nonzero A € M(7) such that Ag < Ah, for all g € M and h € B(f,d(f, M)),
the open ball with center f and radius d(f, M). We will call such a measure a
separating measure for f and M. A set W is said to be a Chebyshev subset of
C(7) if for each f € C(T), the set Py (f) is a single point.

The paper obtains a characterization of Chebyshev hyperplanes in {*°(n)
(Theorem 2.1) and then by using it we state a characterization theorem for
the best approximation from a Chebyshev hyperplane M of [*°(n) (Theo-
rem 2.3). Cheney [2] gives a necessary and sufficient condition for g € M
not to be a best approximation to f € C(7). We give an alternative proof
of Cheney’s characterization (Theorem 3.1), and then use it to give a new
proof of the Basic Theorem 3.2: there exists a finite subset A of 7 such that
d(fla, M|a) = d(f, M) and card A < dim M + 1. Zukhovitskii [7] attributes
the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a
proof due to Shnirel’man, which uses Helly’s Theorem. The significance of the
Basic Theorem for us is that it reduces the characterization of a best approxi-
mation to f from M to the case of finite 7, that is to the case of approximation
in {°°(r). If one solves the problem for the finite case of 7 then one can deduce
the solution to the general case. A set, the existence of which is asserted by
Theorem 3.2, will be called a “basic set”. An immediate consequence of the
Basic Theorem is that for a finite dimensional subspace M of Cy(7) there ex-
ists a separating measure for M and f € Cy(7) \ M, the cardinality of whose
support is not greater than dim M + 1. This result is a special case of a more
general abstract result due to Singer [5]. Theorem 3.9 and Theorem 2.3 char-
acterize Chebyshev hyperplanes in [°°(n) and best approximations from them.
Then the Basic Theorem is used to obtain a general characterization theorem
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(Theorem 3.11) of a best approximation from M to f € C(7). The latter the-
orem is equivalent to Theorem 3.12 which is the extension to a general M, not
necessary Chebyshev, of the Chebyshev Alternation Theorem. We also use the
Basic Theorem to establish the sufficiency of Haar’s condition for a subspace
M of C(T) to be Chebyshev (Theorem 3.10).

Let 0 # f € C(T). The critical set is

citf ={teT : [fOI =/}
Define
e : T — M*bye(t)(g) =gt), forallge M.
Let A C 7. The following conditions are equivalent.

(1) For g € M\ {0},cardg=1(0) <n — 1 (the Haar condition).

(2) For eachset A = {t1,...,t,} of n distinct points the mapping S : M —
R™, defined by S(g) = (g(t1),--.,9(tn)), is injective.

(3) For eachset A= {t1,...,t,} of n distinct points the mapping S : M —
R™ is surjective.

(4) For each set A = {t1,...,t,} of n distinct points dim M|4 = n.

(5) If r <n and ty,...,t, are distinct points of 7 then e(t1),...,e(t,) are
linearly independent points of M*.

(6) If AC T and card A < n then M|4 = C(A).

The following theorems are required.

Theorem 1.1. ([4, Lemma 2.2.1]) Let f € C(T) and let f be not identically
zero. Let M be a subspace of C(T). A necessary and sufficient condition that
0 € Ppm(f) is that, there is no g € M\ {0} such that

f®)g(t) >0 ,for all t € crit f.

Theorem 1.2. (The basic separation theorem)([3, Theorem 38.4]) Suppose A
and B are disjoint, nonempty, convex sets in a topological vector space X.

(a) If A is open there exist ¢ € X* and v € R such that
o(x) <v < p(y) for every x € A and for every y € B.

(b) If A is compact, B is closed, and X is locally convex, then there exist
p € X* 11 € R, v € R, such that

p(x) <y <72 < p(y) for every x € A and for every y € B.

Theorem 1.3. (Caratheodory’s theorem) Let A be a subset of an n—dimensional
linear space. Every point of the convex hull of A is expressible as a convex com-
bination of n+ 1 (or fewer) elements of A.
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Theorem 1.4. (The Chebyshev Alternation Theorem) Let f € C([a,b]). A
polynomial p € P,_1 is a best approximation to f if and only if there exist
n+1 points a <tg <ty <---<t, <bande € {—1,1} such that

(f = p)(t;) =e(=1)||f = p|l for j=0,...,n.

(f — p has n alternations on [a,b]).

2. CHEBYSHEV HYPERPLANES IN [*°(n)

In this section we establish those restricted finite dimensional results for
approximation by hyperplanes in {*°(n) from which, using the Basic Theorem,
the classical results for best approximation from a subspace M of C(7') will
be deduced.

It is a geometrically obvious fact that if M = ¢~1(0) is a hyperplane in a
normed linear space X then M is Chebyshev if and only if {z € X : |z|| =
1 and ¢(x) = ||¢||} is a single point. Interpreting this in the case X = [*°(n)
we obtain a characterization of Chebyshev hyperplanes in {*°(n).

Theorem 2.1. Let ¢ = (p1,...,0,) € I*(n)\ {0}. A hyperplane M = »=1(0)
of 1%°(n) is Chebyshev if and only if pr, #0 for allk=1,...,n.

Proof. Let f = (f(1),...,f(n)) € 1®(n) \ M. So ¢(f) = > p_, ¢rf(k) and
el 11711

= 2kt lonlIfll- Thus o(f) = [l|l [If]] if and only if f(k) = sgn @y f|| when
o # 0. Therefore {f : ||f|l = 1,¢(f) = |l¢ll} is a single point if and only if

pr#O0forallk=1,... n. O

Corollary 2.2. If M is a Chebyshev hyperplane in 1> (n) and A C {1,2,...,n}
then M| = [°(A).

Proof. Let M = ¢~ 1(0) where ¢ € I*(n) \ {0}. Then by Theorem 2.1, ¢ =
Sor_i ¢k er(k) and ¢ # 0 for k = 1,...,n. Now suppose, on the contrary,
that M| C 1°°(A). Then there exists ¢ € I1(A)\ {0} such that M|4 C ¥~1(0).
So t(gla) = 0 for all g € M. Let o = >, , ciea(i). Thus >, 4 ¢ g(i) = 0
for all g € M. That is, (3.4 ¢i er(i))(g) = 0 for all g € M = ¢~ *(0). So
Yieatier(i) = ap = ad i p; er(i) for some a. Therefore, o = 0 and ¢;
are all zero and so ¢ = 0 which is a contradiction. So M|4 = *°(A4). O

The next theorem characterize the best approximation from a Chebyshev
hyperplane M of [°°(n).

Theorem 2.3. Let M be a Chebyshev hyperplane subspace of 1°°(n). Let f €
[°(M)\M and g € M. Then g € Pp(f) if and only if (f —g) (i) = sgnc(@)||f —
gll, fori=1,...,n, where p = (c(1),...,c(n)) € IX(n) and ||p|l1 = 1, € M+
and all ¢(i) are nonzero.
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Proof. By General Characterization Theorem [1,Theorem 1]

g€ Pu(f) & olf—g)=lelllf =gl llell =1,0€ M,
& (f—9)@) =sgnc(@)|f—gl, fori=1,...,n,p € M*.

Also by Theorem 2.1, ¢(i) 20 fori=1,...,n. O

3. THE BAsic THEOREM AND ITS RESULTS

In this section, we will prove “Basic Theorem”. It is important for us be-
cause investigation of best approximation to f € C(7)\ M from M reduces to
the case of finite 7, that is, in finite space [*°(r). A set, the existence of which
is asserted by the theorem, will be called a “basic set”. The Basic Theorem
has worthwhile results. We develop of the Chebyshev theory of best uniform
approximation using the Basic Theorem. The extension to a general (not nec-
essarily Chebyshev ) M of the Chebyshev Alternation Theorem (3.11 and 3.12)
will be obtained by exploiting the Basic Theorem.

The following theorem has been proved in Chapter 3 of [2] and we give an
alternative proof of it.

Theorem 3.1. (Characterization Theorem) In order that g € M is not a best
approzimation to f € C(T), it is necessary and sufficient that 0 € M* is not
in the convex hull of the set { h(t)e(t) : |h(t)| =||h| }, where h =g — f.

Proof. (Use basic separation theorem) Let 7y = crit h. Since h is a continuous
function, then 7j is a closed subset of the compact set 7 and so 7 is a compact
set.

Let A = { h(t)e(t) : t € Tp }. The function he is continuous on the compact
set 7y and so A is a compact subset of M*. Since M* is finite dimensional then
K = co A is compact in M* and K is closed convex subset of M*. By Theorem
1.2, it follows that, 0 ¢ K if and only if there exists ¢ € (M*)*\ {0} such that
(k) > 0 for all, k € K. Since (M*)* = M then it is equivalent to there exists
g € M\{0} such that k(¢g’) > 0 for all, k € K. So it is equivalent to there exists
g € M\ {0} such that (h(t)e(t))(¢g’) > 0 for all ¢ € Tp. Since e(t) (¢') = ¢'(¢),
it means that, there exists ¢’ € M \ {0} such that h(¢) ¢’(t) > 0, for all t € Ty
and so by Theorem 1.1, g € M is not a best approximation to f. (I

In the following, we give a new proof of the Basic Theorem.
Theorem 3.2. (Basic Theorem) Let f € C(7)\ M. Then there exist r points
t1,...,t. € T such that

d(f, M) =d(f|a, Mla) ,
where A ={t1,...,t,} and card A < dim M + 1.
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Proof. Let g € Ppm(f) and h = g — f. That is, d(f,M) = ||f —g|l = ||h]-
Let 7y = crith. Theorem 3.1 (Characterization Theorem) implies that 0 €
K =co{h(t)e(t): t€Ty}. The set { h(t) e(t): t € Ty} is a subset of n-
dimensional space M* and so it follows from Caratheodory’s theorem (The-
orem 1.3) that >\, a; h(t;) e(t;) = 0, for some t1,...,t, in 7y and some
positive numbers aq, ..., a, with 2221 a; = 1, where r < dim M + 1.

Let A= {t1,...,t,}andenq, : T — (M]a)*. Then 0 € co {h(t)epq,(t): t € A}.
One can apply Theorem 3.1 (Characterization Theorem) to A, M| and g|a €

Prmya (fla) and get d(fla, M[a) = [|(f = g)lall = 1Al = If = gl = d(f, M).
(]

Remark 3.3. In the Basic Theorem 1 < r < n + 1 in the real case and 1 < r <
2n 4+ 1 in the complex case, because of, C* = R?”. Also,we call A C T a “basic
set” for M and f if it is finite and such that d(f, M) = d(f|a, M]a)-

The significance of the Basic Theorem is that it reduces the characterization
of best approximation to f from M to the case of finite 7, that is to the case
of approximation in [°°(r). If one solves the problem for the finite case of 7
then one can deduce the solution to the general case.

The Basic Theorem implies the following corollaries.

Corollary 3.4. Let f € C(T) and g € M. Let A C T be a basic set for M and
f- Then g € Pm(f) if and only if |[f —gll = [I(f — g)|all and gla € Paq,(fla).
Proof. Let g € Pyp(f). By the Basic Theorem,

d(fla; Mla) = d(f, M) = If = gll = [[(f = g)|all = d(f|a, M|a) ,

which implies that ||f —g[| = ||(f — g)|all and g|a € Py, (f|a). Now assume

that, gla € P, (fa) and [[f = gll = [[(f = g9)[all = d(f|a, M[a) = d(f, M)
(the Basic Theorem implies the last equality). Therefore g € Pa(f). O

Corollary 3.5. Let f € C(T)\ M. Let A C T be a minimal basic set for M
and f. Then A C crit(f — Prm(f)) = Ngepa () crit(f — g).

Proof. Let g € relint Pypg(f). From Corollary 3.4 it follows that

I(f = 9)lall = 1f = gll = I(F = @lexie(s-o)lI-

So @ # Ancrit(f —g) € A and it will be shown that B = A N crit(f — g)
is a basic set for M and f. If B = A then there is nothing to prove. Now
if a € A\ B then |(f — g)(a)] < ||f — gl|- Suppose, on the contrary, that
d(f|s, M|B) < d(f|a, M|a). Choose g’ € M such that ¢'|p € Purqj,(f|B)- So

I(f = gIsll = d(f|, M) < d(f|a, M|a) = (f = g)lall
Now for 6 € (0,1), consider

I = (1= 0)g" + Bl all = mace{ max |(F = (1 = 6)g' +69)(@)].

I(f = (L= 0)g"+ 09))|5]}-
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Since |(f = g)(@)] < |[f — gll and the set {|(f — ¢")(a)] : a € A\ B} is
bounded so for @ close to 1, maxaea\p |(f — ((1 = 0)g" + 09))(a)| < |If — gl|,
also [|(f = ¢")sll < lf — gl and |(f = 9)[B]l < [[(f = g)lall = [f — gl|. Thus

I(f = (1 = 0)g" + bg))all < [If = gll,
which is a contradiction. Therefore, B = A C crit(f — g) is a basic set for M
and f and so by next remark A C crit(f — Pm(f)). O
Remark 3.6. If g € relint Py(f) then

crit(f — g) = crit(f — P (f)).

Because, let t € crit(f —g) and let ¢’ € Pap(f)\{g}. Then g € (¢’, ¢") for some
g" € Pym(f). That is, for some 6 € (0,1), g = (1 —60)g’ + 0g” and

d(f, M) =|If =gl = I(f =) < A = O)|(f = g)B) +0I(f = g") (D)
S@=0lf =gl +01f = g"l = d(f, M).
So t € crit(f — ¢'). That is, crit(f — g) = crit(f — Pm(f))-

The following theorem is an immediate consequence of the Basic Theorem.

Theorem 3.7. Let f € Co(T)\ M. Then there exists a separating measure o,
for f and M, such that | supp p| < dim M + 1.

Proof. Let A be a minimal basic set for M and f. If p € (M|4)* is a separating
measure for f|4 and M|a. Then ¢ is of the form ¢ = 7., c(i) e(i), (e(i) €
C(A)*). The functional ¢ has the natural extension ¢ =, , (i) e(i), (e(i) €
Co(7T)*) and ¢ is a separating measure for f and M. Therefore, |supp @| =
card A < dim M + 1. (By the Basic Theorem.) O

Theorem 3.8. Let f € C(7)\ M. Let A be a minimal basic set for M and
f. Then M| 4 is a Chebyshev hyperplane in C(A).

Proof. Apply the Basic Theorem to C(A), M|4 and f|4 then there exists a
minimal basic set A; C A such that card 41 < dim M| + 1 and d(f, M) =
d(f|AaM|A> = d(f|A\A15M|A|Al) = d(f|A15M|A1)' By minimahty of Aa it
follows that A; = A.So
dimC(A) < card A < dim M|z + 1.

But f|a ¢ M|a so dim M|4 = dim C(A) — 1. That is, M|4 is a hyperplane in
C(A).

By Corollary 3.5, A = Ay C crit(f|a — Pu,(f]a)) and so all functions of

P14 (fla) coincide on A, that is Pugj, (f]a) is a single point. Thus M|, is
Chebyshev in C(A). O

Theorem 3.9. Let n > 1. A hyperplane M of 1*°(n) is Chebyshev if and only
if A={1,2,...,n} is the only basic set.
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Proof. (=) By Corollary 2.2.
(<) By Theorem 3.8. O

Theorem 3.10. (Haar’s Theorem) Let M be a finite dimensional subspace of
C(7T). Then M satisfies the Haar Condition if and only if M is a Chebyshev
subspace of C(T).

Proof. (=) Let f € C(T)\ M and dim M = n. Let A = {t;,...,t,} be a min-
imal basic set for M and f. Suppose that r < n. Then e, (t1),..., e, (tr)
are linearly independent(equivalent to Haar Condition). So dim M|, = r and
M]a = C(A) which contradicts d(f|a, M|a) = d(f, M) # 0. Thus r = n + 1.
So the restriction mapping r4 : M — M| 4 is injective and M| 4 is Chebyshev
in C(A) (Theorem 3.8) and ra(Pu(f)) € Paqj,(fla). Thus Pr(f) is a single
point. That is, M is a Chebyshev subspace of C(T).

Now(<«=), by any known proof of Haar’s Theorem. O

Now by Corollary 3.4, Theorem 3.8 and Theorem 2.3, one can obtain the
following general characterization theorem. Singer [6] obtained a more general
abstract characterization theorem of which, this is a special case.

Theorem 3.11. Let f € C(T)\ M and g € M. Then g € Pp(f) if and only
if there exists a nonempty finite subset A = {t1,...,t,} of T, 1 <r <n-+1,
and nonzero c(t) fort € A with )7, 4 |c(t)| = 1 such that

(1) Yieacltle(t) € M*, and;

(2) f(t) —g(t) = sgne(t) [|f — gll, for t € A.
Proof. Let A be a minimal basic set for M and f (card A < dim M+1 = n+1).
By Corollary 3.4, g € Pu(f) if and only if g[a € P, (f]a) and ||f — g|| =
I(f — 9)|all- By Theorem 3.8 and Theorem 2.3, it is equivalent to there exists
a non-zero c(t) for t € A with ), 4 [c(t)| = 1 such that

(1) Yieacltle(t) € M+, and;

(2) f(t) —g(t) = sgnc(t) [|f — gl for t € A.

(]

If r is the smallest integer such that Theorem 3.11 is satisfied then we obtain
the following characterization theorem.

Theorem 3.12. Let f € C(T)\M and g € M. Then g € Ppm(f) if and only if
there exists a nonempty finite subset A = {t1,...,t.} of T, where 1 <r <n+1
with the following properties,

(i) The rank of the matriz:
gi(tr) ... gi(ty)
G= : : :
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is less than r, where {g1,...,gn} is a basis of M.
(ii) The matriz
gi(t1) ... gqultr)
gn(t1) ... gn(ts)
ft) o f(t)

is of rank r.

(iii) Among the minors of order r of the matriz in part (ii), there exists at
least a minor A\ # 0 in which all cofactors A; of the elements f(t;),
j=1,...,7 are nonzero.

(iv) The following equalities are satisfied,

£(t5) = 9(t5) = (sgm ) I —gll Jor g =1,....m

Proof. The Theorem 3.12 is a translation of the Theorem 3.11 (modified if
necessary).

(i) , (ili) < (1) and the fact that all ¢(t) are nonzero for ¢t € A. Also, r is
minimal and dim M|4 =7 — 1.

(ii) < fla ¢ M]a which relates to A is minimal.

(iv) & (2) O

This result, attributed by Zukhovitskii to Remez is the generalization of the
Chebyshev Alternation Theorem for Chebyshev M C C([0, 1]) to a general (not
necessary Chebyshev) M C C(7). If the theorem is specialized to 7 = [0, 1]
and M Chebyshev, then it yields the alternation theorem.
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