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Abstract. Let T be a compact Hausdorff topological space and let

M denote an n–dimensional subspace of the space C(T ), the space of

real–valued continuous functions on T and let the space be equipped

with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem

to E.Ya.Remez and gives a proof by duality. He also gives a proof due

to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a

new proof of the Basic Theorem. The significance of the Basic Theorem

for us is that it reduces the characterization of a best approximation

to f ∈ C(T ) from M to the case of finite T , that is to the case of

approximation in l∞(r). If one solves the problem for the finite case of

T then one can deduce the solution to the general case. An immediate

consequence of the Basic Theorem is that for a finite dimensional subspace

M of C0(T ) there exists a separating measure for M and f ∈ C0(T )\M,

the cardinality of whose support is not greater than dimM+1. This result

is a special case of a more general abstract result due to Singer [5]. Then

the Basic Theorem is used to obtain a general characterization theorem

of a best approximation from M to f ∈ C(T ). We also use the Basic

Theorem to establish the sufficiency of Haar’s condition for a subspace

M of C(T ) to be Chebyshev.
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1. Introduction

Throughout this paper the setting will be as follows: T will be a compact
Hausdorff topological space and C(T ) will denote the space of real continuous
functions on T and M is an n–dimensional subspace of C(T ). The spaces C(T )
are equipped with the uniform norm. The uniform norm is defined by

‖f‖ = max
t∈T

|f(t)| for all f ∈ C(T ) ,

and

d(f , M) = inf
g∈M

‖f − g‖ for f ∈ C(T ) ,

is called the distance from f to M. We denote by

PM(f) = {g ∈ M : ‖f − g‖ = d(f , M) } ,

the set of best approximations to f from M.

The space M(T ) of bounded real valued Borel measures on T is isometrically
isomorphic to the space of bounded linear functionals on C(T ). There is a
nonzero λ ∈ M(T ) such that λg < λh, for all g ∈ M and h ∈ B(f, d(f,M)),
the open ball with center f and radius d(f,M). We will call such a measure a
separating measure for f and M. A set W is said to be a Chebyshev subset of
C(T ) if for each f ∈ C(T ), the set PW (f) is a single point.

The paper obtains a characterization of Chebyshev hyperplanes in l∞(n)
(Theorem 2.1) and then by using it we state a characterization theorem for
the best approximation from a Chebyshev hyperplane M of l∞(n) (Theo-
rem 2.3). Cheney [2] gives a necessary and sufficient condition for g ∈ M
not to be a best approximation to f ∈ C(T ). We give an alternative proof
of Cheney’s characterization (Theorem 3.1), and then use it to give a new
proof of the Basic Theorem 3.2: there exists a finite subset A of T such that
d(f |A,M|A) = d(f,M) and cardA ≤ dimM + 1. Zukhovitskii [7] attributes
the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a
proof due to Shnirel’man, which uses Helly’s Theorem. The significance of the
Basic Theorem for us is that it reduces the characterization of a best approxi-
mation to f from M to the case of finite T , that is to the case of approximation
in l∞(r). If one solves the problem for the finite case of T then one can deduce
the solution to the general case. A set, the existence of which is asserted by
Theorem 3.2, will be called a “basic set”. An immediate consequence of the
Basic Theorem is that for a finite dimensional subspace M of C0(T ) there ex-
ists a separating measure for M and f ∈ C0(T ) \M, the cardinality of whose
support is not greater than dimM + 1. This result is a special case of a more
general abstract result due to Singer [5]. Theorem 3.9 and Theorem 2.3 char-
acterize Chebyshev hyperplanes in l∞(n) and best approximations from them.
Then the Basic Theorem is used to obtain a general characterization theorem
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(Theorem 3.11) of a best approximation from M to f ∈ C(T ). The latter the-
orem is equivalent to Theorem 3.12 which is the extension to a general M, not
necessary Chebyshev, of the Chebyshev Alternation Theorem. We also use the
Basic Theorem to establish the sufficiency of Haar’s condition for a subspace
M of C(T ) to be Chebyshev (Theorem 3.10).

Let 0 6≡ f ∈ C(T ). The critical set is

crit f = {t ∈ T : |f(t)| = ‖f‖ } .

Define

e : T −→ M? by e(t)(g) = g(t) , for all g ∈ M .

Let A ⊆ T . The following conditions are equivalent.

(1) For g ∈ M \ {0}, card g−1(0) ≤ n− 1 (the Haar condition).
(2) For each set A = {t1, . . . , tn} of n distinct points the mapping S : M →

Rn, defined by S(g) = (g(t1), . . . , g(tn)), is injective.
(3) For each set A = {t1, . . . , tn} of n distinct points the mapping S : M →

Rn is surjective.
(4) For each set A = {t1, . . . , tn} of n distinct points dimM|A = n.

(5) If r ≤ n and t1, . . . , tr are distinct points of T then e(t1), . . . , e(tr) are
linearly independent points of M?.

(6) If A ⊆ T and cardA ≤ n then M|A = C(A).

The following theorems are required.

Theorem 1.1. ([4, Lemma 2.2.1]) Let f ∈ C(T ) and let f be not identically
zero. Let M be a subspace of C(T ). A necessary and sufficient condition that
0 ∈ PM(f) is that, there is no g ∈ M \ {0} such that

f(t)g(t) > 0 , for all t ∈ crit f.

Theorem 1.2. (The basic separation theorem)([3,Theorem 3.4]) Suppose A

and B are disjoint, nonempty, convex sets in a topological vector space X .

(a) If A is open there exist ϕ ∈ X ? and γ ∈ R such that

ϕ(x) < γ ≤ ϕ(y) for every x ∈ A and for every y ∈ B.

(b) If A is compact, B is closed, and X is locally convex, then there exist
ϕ ∈ X ?, γ1 ∈ R, γ2 ∈ R, such that

ϕ(x) < γ1 < γ2 < ϕ(y) for every x ∈ A and for every y ∈ B.

Theorem 1.3. (Caratheodory’s theorem) Let A be a subset of an n–dimensional
linear space. Every point of the convex hull of A is expressible as a convex com-
bination of n+ 1 (or fewer) elements of A.
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Theorem 1.4. (The Chebyshev Alternation Theorem) Let f ∈ C([a, b]). A
polynomial p ∈ Pn−1 is a best approximation to f if and only if there exist
n+ 1 points a ≤ t0 < t1 < · · · < tn ≤ b and ε ∈ {−1, 1} such that

(f − p)(tj) = ε(−1)j‖f − p‖ for j = 0, . . . , n.

(f − p has n alternations on [a, b]).

2. Chebyshev Hyperplanes in l∞(n)

In this section we establish those restricted finite dimensional results for
approximation by hyperplanes in l∞(n) from which, using the Basic Theorem,
the classical results for best approximation from a subspace M of C(T ) will
be deduced.

It is a geometrically obvious fact that if M = ϕ−1(0) is a hyperplane in a
normed linear space X then M is Chebyshev if and only if {x ∈ X : ‖x‖ =
1 and ϕ(x) = ‖ϕ‖} is a single point. Interpreting this in the case X = l∞(n)
we obtain a characterization of Chebyshev hyperplanes in l∞(n).

Theorem 2.1. Let ϕ = (ϕ1, . . . , ϕn) ∈ l1(n) \ {0}. A hyperplane M = ϕ−1(0)
of l∞(n) is Chebyshev if and only if ϕk 6= 0 for all k = 1, . . . , n.

Proof. Let f = (f(1), . . . , f(n)) ∈ l∞(n) \ M. So ϕ(f) =
∑n

k=1 ϕkf(k) and
‖ϕ‖ ‖f‖
=

∑n
k=1 |ϕk|.‖f‖. Thus ϕ(f) = ‖ϕ‖ ‖f‖ if and only if f(k) = sgnϕk.‖f‖ when

ϕk 6= 0. Therefore {f : ‖f‖ = 1, ϕ(f) = ‖ϕ‖} is a single point if and only if
ϕk 6= 0 for all k = 1, . . . , n. �

Corollary 2.2. If M is a Chebyshev hyperplane in l∞(n) and A ⊂ {1, 2, . . . , n}
then M|A = l∞(A).

Proof. Let M = ϕ−1(0) where ϕ ∈ l1(n) \ {0}. Then by Theorem 2.1, ϕ =∑n
k=1 ϕk eT (k) and ϕk 6= 0 for k = 1, . . . , n. Now suppose, on the contrary,

that M|A ⊂ l∞(A). Then there exists ψ ∈ l1(A)\{0} such that M|A ⊆ ψ−1(0).
So ψ(g|A) = 0 for all g ∈ M. Let ψ =

∑
i∈A cieA(i). Thus

∑
i∈A ci g(i) = 0

for all g ∈ M. That is, (
∑

i∈A ci eT (i))(g) = 0 for all g ∈ M = ϕ−1(0). So∑
i∈A ci eT (i) = αϕ = α

∑n
i=1 ϕi eT (i) for some α. Therefore, α = 0 and ci

are all zero and so ψ ≡ 0 which is a contradiction. So M|A = l∞(A). �

The next theorem characterize the best approximation from a Chebyshev
hyperplane M of l∞(n).

Theorem 2.3. Let M be a Chebyshev hyperplane subspace of l∞(n). Let f ∈
l∞(n)\M and g ∈ M. Then g ∈ PM(f) if and only if (f−g)(i) = sgn c(i)‖f−
g‖, for i = 1, . . . , n, where ϕ = (c(1), . . . , c(n)) ∈ l1(n) and ‖ϕ‖1 = 1, ϕ ∈ M⊥

and all c(i) are nonzero.
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Proof. By General Characterization Theorem [1,Theorem 1]

g ∈ PM(f) ⇔ ϕ(f − g) = ‖ϕ‖ ‖f − g‖, ‖ϕ‖ = 1 , ϕ ∈ M⊥,

⇔ (f − g)(i) = sgn c(i)‖f − g‖, for i = 1, . . . , n , ϕ ∈ M⊥.

Also by Theorem 2.1, c(i) 6= 0 for i = 1, . . . , n. �

3. The Basic Theorem and its Results

In this section, we will prove “Basic Theorem”. It is important for us be-
cause investigation of best approximation to f ∈ C(T )\M from M reduces to
the case of finite T , that is, in finite space l∞(r). A set, the existence of which
is asserted by the theorem, will be called a “basic set”. The Basic Theorem
has worthwhile results. We develop of the Chebyshev theory of best uniform
approximation using the Basic Theorem. The extension to a general (not nec-
essarily Chebyshev ) M of the Chebyshev Alternation Theorem (3.11 and 3.12)
will be obtained by exploiting the Basic Theorem.

The following theorem has been proved in Chapter 3 of [2] and we give an
alternative proof of it.

Theorem 3.1. (Characterization Theorem) In order that g ∈ M is not a best
approximation to f ∈ C(T ), it is necessary and sufficient that 0 ∈ M? is not
in the convex hull of the set { h(t)e(t) : |h(t)| = ‖h‖ } , where h = g − f.

Proof. (Use basic separation theorem) Let T0 = crith. Since h is a continuous
function, then T0 is a closed subset of the compact set T and so T0 is a compact
set.
Let A = { h(t)e(t) : t ∈ T0 } . The function he is continuous on the compact
set T0 and so A is a compact subset of M?. Since M? is finite dimensional then
K = coA is compact in M? and K is closed convex subset of M?. By Theorem
1.2, it follows that, 0 /∈ K if and only if there exists ϕ ∈ (M?)? \ {0} such that
ϕ(k) > 0 for all, k ∈ K. Since (M?)? ∼= M then it is equivalent to there exists
g′ ∈ M\{0} such that k(g′) > 0 for all, k ∈ K. So it is equivalent to there exists
g′ ∈ M\{0} such that (h(t) e(t) )(g′) > 0 for all t ∈ T0. Since e(t) (g′) = g′(t),
it means that, there exists g′ ∈ M \ {0} such that h(t) g′(t) > 0, for all t ∈ T0

and so by Theorem 1.1, g ∈ M is not a best approximation to f. �

In the following, we give a new proof of the Basic Theorem.

Theorem 3.2. (Basic Theorem) Let f ∈ C(T ) \M. Then there exist r points
t1, . . . , tr ∈ T such that

d(f,M) = d(f |A,M|A) ,

where A = {t1, . . . , tr} and cardA ≤ dimM + 1.
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Proof. Let g ∈ PM(f) and h = g − f. That is, d(f,M) = ‖f − g‖ = ‖h‖ .
Let T0 = crith. Theorem 3.1 (Characterization Theorem) implies that 0 ∈
K = co { h(t) e(t) : t ∈ T0 } . The set { h(t) e(t) : t ∈ T0 } is a subset of n-
dimensional space M? and so it follows from Caratheodory’s theorem (The-
orem 1.3) that

∑r
i=1 αi h(ti) e(ti) = 0, for some t1, . . . , tr in T0 and some

positive numbers α1, . . . , αr with
∑r

i=1 αi = 1, where r ≤ dimM + 1.
LetA = {t1, . . . , tr} and eM|A : T → (M|A)?. Then 0 ∈ co

{
h(t)eM|A(t) : t ∈ A

}
.

One can apply Theorem 3.1 (Characterization Theorem) to A , M|A and g|A ∈
PM|A (f |A) and get d(f |A , M|A) = ‖(f − g)|A‖ = ‖h‖ = ‖f − g‖ = d(f,M).

�

Remark 3.3. In the Basic Theorem 1 ≤ r ≤ n+ 1 in the real case and 1 ≤ r ≤
2n+1 in the complex case, because of, Cn = R2n. Also,we call A ⊆ T a “basic
set” for M and f if it is finite and such that d(f,M) = d(f |A,M|A).

The significance of the Basic Theorem is that it reduces the characterization
of best approximation to f from M to the case of finite T , that is to the case
of approximation in l∞(r). If one solves the problem for the finite case of T
then one can deduce the solution to the general case.
The Basic Theorem implies the following corollaries.

Corollary 3.4. Let f ∈ C(T ) and g ∈ M. Let A ⊆ T be a basic set for M and
f. Then g ∈ PM(f) if and only if ‖f − g‖ = ‖(f − g)|A‖ and g|A ∈ PM|A(f |A).

Proof. Let g ∈ PM(f). By the Basic Theorem,

d(f |A,M|A) = d(f,M) = ‖f − g‖ ≥ ‖(f − g)|A‖ ≥ d(f |A,M|A) ,

which implies that ‖f − g‖ = ‖(f − g)|A‖ and g|A ∈ PM|A(f |A). Now assume
that, g|A ∈ PM|A(f |A) and ‖f − g‖ = ‖(f − g)|A‖ = d(f |A,M|A) = d(f,M)
(the Basic Theorem implies the last equality). Therefore g ∈ PM(f). �

Corollary 3.5. Let f ∈ C(T ) \M. Let A ⊆ T be a minimal basic set for M
and f. Then A ⊆ crit(f − PM(f)) = ∩g∈PM(f) crit(f − g).

Proof. Let g ∈ relintPM(f). From Corollary 3.4 it follows that

‖(f − g)|A‖ = ‖f − g‖ = ‖(f − g)|crit(f−g)‖.

So ∅ 6= A ∩ crit(f − g) ⊆ A and it will be shown that B = A ∩ crit(f − g)
is a basic set for M and f. If B = A then there is nothing to prove. Now
if a ∈ A \ B then |(f − g)(a)| < ‖f − g‖. Suppose, on the contrary, that
d(f |B ,M|B) < d(f |A,M|A). Choose g′ ∈ M such that g′|B ∈ PM|B (f |B). So

‖(f − g′)|B‖ = d(f |B ,M|B) < d(f |A,M|A) = ‖(f − g)|A‖.

Now for θ ∈ (0, 1), consider

‖(f − ((1 − θ)g′ + θg))|A‖ = max{ max
a∈A\B

|(f − ((1 − θ)g′ + θg))(a)|,

‖(f − ((1 − θ)g′ + θg))|B‖}.
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Since |(f − g)(a)| < ‖f − g‖ and the set {|(f − g′)(a)| : a ∈ A \ B} is
bounded so for θ close to 1, maxa∈A\B |(f − ((1 − θ)g′ + θg))(a)| < ‖f − g‖,
also ‖(f − g′)|B‖ < ‖f − g‖ and ‖(f − g)|B‖ ≤ ‖(f − g)|A‖ = ‖f − g‖. Thus

‖(f − ((1 − θ)g′ + θg))|A‖ < ‖f − g‖,

which is a contradiction. Therefore, B = A ⊆ crit(f − g) is a basic set for M
and f and so by next remark A ⊆ crit(f − PM(f)). �

Remark 3.6. If g ∈ relintPM(f) then

crit(f − g) = crit(f − PM(f)).

Because, let t ∈ crit(f−g) and let g′ ∈ PM(f)\{g}. Then g ∈ (g′, g′′) for some
g′′ ∈ PM(f). That is, for some θ ∈ (0, 1), g = (1 − θ)g′ + θg′′ and

d(f,M) = ‖f − g‖ = |(f − g)(t)| ≤ (1 − θ)|(f − g′)(t)| + θ|(f − g′′)(t)|
≤ (1 − θ)‖f − g′‖ + θ‖f − g′′‖ = d(f,M).

So t ∈ crit(f − g′). That is, crit(f − g) = crit(f − PM(f)).

The following theorem is an immediate consequence of the Basic Theorem.

Theorem 3.7. Let f ∈ C0(T ) \M. Then there exists a separating measure ϕ,
for f and M, such that | suppϕ| ≤ dimM + 1.

Proof. Let A be a minimal basic set for M and f. If ϕ ∈ (M|A)? is a separating
measure for f |A and M|A. Then ϕ is of the form ϕ =

∑
i∈A c(i) e(i), (e(i) ∈

C(A)?). The functional ϕ has the natural extension ϕ̄ =
∑

i∈A c(i) e(i), (e(i) ∈
C0(T )?) and ϕ̄ is a separating measure for f and M. Therefore, | supp ϕ̄| =
cardA ≤ dimM + 1. (By the Basic Theorem.) �

Theorem 3.8. Let f ∈ C(T ) \ M. Let A be a minimal basic set for M and
f. Then M|A is a Chebyshev hyperplane in C(A).

Proof. Apply the Basic Theorem to C(A),M|A and f |A then there exists a
minimal basic set A1 ⊆ A such that cardA1 ≤ dimM|A + 1 and d(f,M) =
d(f |A,M|A) = d(f |A|A1

,M|A|A1
) = d(f |A1 ,M|A1). By minimality of A, it

follows that A1 = A.So

dimC(A) ≤ cardA ≤ dimM|A + 1.

But f |A /∈ M|A so dimM|A = dimC(A) − 1. That is, M|A is a hyperplane in
C(A).

By Corollary 3.5, A = A1 ⊆ crit(f |A − PM|A(f |A)) and so all functions of
PM|A(f |A) coincide on A, that is PM|A(f |A) is a single point. Thus M|A is
Chebyshev in C(A). �

Theorem 3.9. Let n > 1. A hyperplane M of l∞(n) is Chebyshev if and only
if A = {1, 2, . . . , n} is the only basic set.
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Proof. (⇒) By Corollary 2.2.
(⇐) By Theorem 3.8. �

Theorem 3.10. (Haar’s Theorem) Let M be a finite dimensional subspace of
C(T ). Then M satisfies the Haar Condition if and only if M is a Chebyshev
subspace of C(T ).

Proof. (⇒) Let f ∈ C(T ) \M and dimM = n. Let A = {t1, . . . , tr} be a min-
imal basic set for M and f. Suppose that r ≤ n. Then eM|A(t1), . . . , eM|A(tr)
are linearly independent(equivalent to Haar Condition). So dimM|A = r and
M|A = C(A) which contradicts d(f |A,M|A) = d(f,M) 6= 0. Thus r = n+ 1.
So the restriction mapping rA : M −→ M|A is injective and M|A is Chebyshev
in C(A) (Theorem 3.8) and rA(PM(f)) ⊆ PM|A(f |A). Thus PM(f) is a single
point. That is, M is a Chebyshev subspace of C(T ).
Now(⇐), by any known proof of Haar’s Theorem. �

Now by Corollary 3.4, Theorem 3.8 and Theorem 2.3, one can obtain the
following general characterization theorem. Singer [6] obtained a more general
abstract characterization theorem of which, this is a special case.

Theorem 3.11. Let f ∈ C(T ) \M and g ∈ M. Then g ∈ PM(f) if and only
if there exists a nonempty finite subset A = {t1, . . . , tr} of T , 1 ≤ r ≤ n + 1,
and nonzero c(t) for t ∈ A with

∑
t∈A |c(t)| = 1 such that

(1)
∑

t∈A c(t)e(t) ∈ M⊥, and;
(2) f(t) − g(t) = sgn c(t) ‖f − g‖, for t ∈ A.

Proof. Let A be a minimal basic set for M and f (cardA ≤ dimM+1 = n+1).
By Corollary 3.4, g ∈ PM(f) if and only if g|A ∈ PM|A(f |A) and ‖f − g‖ =
‖(f − g)|A‖. By Theorem 3.8 and Theorem 2.3, it is equivalent to there exists
a non-zero c(t) for t ∈ A with

∑
t∈A |c(t)| = 1 such that

(1)
∑

t∈A c(t)e(t) ∈ M⊥, and;
(2) f(t) − g(t) = sgn c(t) ‖f − g‖, for t ∈ A.

�

If r is the smallest integer such that Theorem 3.11 is satisfied then we obtain
the following characterization theorem.

Theorem 3.12. Let f ∈ C(T )\M and g ∈ M. Then g ∈ PM(f) if and only if
there exists a nonempty finite subset A = {t1, . . . , tr} of T , where 1 ≤ r ≤ n+1
with the following properties,

(i) The rank of the matrix:

G =



g1(t1) . . . g1(tr)

...
...

...
gn(t1) . . . gn(tr)



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is less than r, where {g1, . . . , gn} is a basis of M.

(ii) The matrix 


g1(t1) . . . g1(tr)
...

...
...

gn(t1) . . . gn(tr)
f(t1) . . . f(tr)




is of rank r.
(iii) Among the minors of order r of the matrix in part (ii), there exists at

least a minor 4 6= 0 in which all cofactors 4j of the elements f(tj),
j = 1, . . . , r are nonzero.

(iv) The following equalities are satisfied,

f(tj) − g(tj) = (sgn
4j

4
) ‖f − g‖ , for j = 1, . . . , r.

Proof. The Theorem 3.12 is a translation of the Theorem 3.11 (modified if
necessary).
(i) , (iii) ⇔ (1) and the fact that all c(t) are nonzero for t ∈ A. Also, r is
minimal and dimM|A = r − 1.
(ii) ⇔ f |A /∈ M|A which relates to A is minimal.
(iv) ⇔ (2) �

This result, attributed by Zukhovitskii to Remez is the generalization of the
Chebyshev Alternation Theorem for Chebyshev M ⊆ C([0, 1]) to a general (not
necessary Chebyshev) M ⊆ C(T ). If the theorem is specialized to T = [0, 1]
and M Chebyshev, then it yields the alternation theorem.
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